Category Archives: technology

Glimpses of the future

img_20191202_11464701476857317.jpg

I didn’t get to ride on the Acela, but it was there when we got into the station.

On a recent trip up to D.C., my wife and I decided to leave the car at home. During our time here in Virginia, we’ve been to D.C. dozens of times for work or play, but we’ve always driven from our home to Alexandria or the District itself. Once there we would take the Metro or walk, but driving in NoVa and DC isn’t something I’d describe as fun. Now that we’re in an Amtrak town, however, it seemed like the perfect time to try traveling together without the car.

Walking a couple blocks to the bus station in Charlottesville, we were whisked away toward the Amtrak station. Minutes later, we got off the bus and walked over to the train station which included lugging our suitcase down a rather large staircase. This seems like one of the many places where Charlottesville’s non-motorized infrastructure could be improved, particularly for those with disabilities. I believe there is a way to get there without taking the staircase, but it requires going a much longer way from the bus stop.

As you may recall, I took my first Amtrak trip this spring, so I was surprised by the massive number of people at the station this go round. My wife suggested it was because of the holidays, which made sense with it being the Monday after Thanksgiving. In any case, the hundred or more people waiting on the train was a great difference from the twenty or so this spring.

Riding the train from Charlottesville to D.C. was uneventful, with only a short delay by Alexandria to wait on another Amtrak unloading their passengers at the station. I was able to doze while my wife worked on her laptop. The Northeast Regional seems to have slightly smaller seats than the Cardinal but is still vastly more comfortable than a plane ride.

After we got off the train at Union Station, we were able to hop the Red Line Metro to our hotel. After settling in, I walked down the street to get some food, and ran across oodles of bike and scooter sharing vehicles. In Charlottesville we have Lime and VeoRide scooters, but D.C. is a much bigger town, so while it’s no wonder they have more options, it was still staggering. I took a screenshot of my Transit app to show all the little dots by the Zoo Metro stop, but it doesn’t even show some of the options like the Revel moped rental.

A map is shown of the area around the Woodley Park/Zoo Metro stop in DC. There are a large number of dots indicating a high density of scooter, bike, and car shares available in the neighborhood.

Bike, scooter, and car shares available near Woodley Park

Having grown up in a relatively rural area of Missouri, I’m still amazed at all the different alternative modes of transit available. There, your transportation options were car, truck, or subsidized shuttle bus for certain subsets of the population. I’m really looking forward to a solarpunk future where it’s even easier to get around without a car. The group, Virginians for High Speed Rail, is currently working toward building out the rail network here in Virginia, and I know there are others calling for true investment in cross country high speed rail here in the United States. Since high-speed rail is less environmentally taxing than air travel, and generally faster for trips less than 430 miles, I think it’s a solid infrastructure investment the country should be seriously examining.

A map of VA showing current and future regional/long distance Amtrak routes. I believe this is aspirational, not planned.

Virginians For High-Speed Rail Map

Until then, I’ll have to be content with short haul rail service that is comparable to car travel times along the Eastern Seaboard and only do long distance rail when I can afford the time. That said, having access to D.C., New York City, and Boston without having to pay for parking in any of those cities or deal with the headaches of driving will give me a glimmer of the future we want.

Have you had any eye-opening experiences on public or shared transit? What changes would you make to build a better transportation network in your area? Let us know in the comments!

Bikes for a better tomorrow

gray commuter bike parked on road beside sea

Photo by Adam Dubec on Pexels.com

If you’ve been reading this blog for long, you’ll know I have a special place in my heart for the bicycle. I wasn’t really into biking as a kid since I grew up on a hilly farm without any safe paved areas nearby, but in college my roommate got me hooked when I joined him and a couple friends on a bike tour of the Katy Trail in Missouri.

I don’t tour anymore, but I do still use my bicycle for transportation, and it’s one of the reasons I moved close to downtown even though it required a bit of downsizing. Being able to run errands on foot or bike is a big plus for me, although I’ll admit that still having a car means I don’t bike or walk as much as I’d like.

For me, a solarpunk future is one where people have what they need a short walk or bike ride away. Biking, walking, and other forms of active transportation are a surefire way to reduce road congestion, clean the air, and reduce carbon emissions in our cities. There will likely be a place for the private automobile in rural areas for the foreseeable future, but the American Dream of suburbia is hopefully coming to a close. Don’t get me wrong, automobiles are a really impressive piece of technology, but as Peter Walker says in How Cycling Can Save the World, “they’re used far too often and frequently for the wrong sort of trips.”

This spring, I joined the city’s Bicycle and Pedestrian Advisory Committee to see what could be done to improve “alternative” modes of transport in the city. This lets me use all the years of reading transportation and urban planning blogs in a place where it might actually have an effect. While some cities like NYC push for lower speed limits and more protected bike lanes, most cities in the United States are still deep in the throes of car culture, a modern day death cult. The first step is to remove parking minimums from zoning codes. Donald Shoup estimates free parking amounts to a $500 billion subsidy for car owners, or 50 cents of public money for every dollar spent by the individual car owner. While some local business owners say that removing parking will kill their business, in most cases, better bicycling and pedestrian facilities actually are better for local businesses. If the parking doesn’t go in to begin with, then you don’t have to worry about the inevitable battle to remove it later.

photo of smiling woman in white dress and brown boots posing in multicolored glass house

Photo by Jeremy Bishop on Pexels.com

Solarpunk is about building a truly equitable and sustainable future. Much of the current environmental conversation is about what you can’t do to make a sustainable future – you can’t drive a personal vehicle, you can’t take long showers, etc. For me, solarpunk paints a picture of what we gain when we do the right thing. Being more connected to your community and taking time to enjoy the little nooks and crannies that make our cities so interesting may sound quaint, but it can bring real happiness. Being trapped in a metal box breathing the noxious fumes while at a standstill does not spark joy.

In addition, the design choices that making cycling and walking better also improve accessibility for disabled individuals when coupled with ADA guidelines. A well designed sidewalk is pleasant to walk down but is also a lot better for someone in a wheelchair to navigate than the side of the road with a gravel or grass shoulder. There’s no shortage of concern trolls who crop up when people start suggesting that the current dominance of cars on the streets isn’t the natural order of things. There are people with some disabilities for whom personal automobiles are a great blessing. Many disabled individuals do cycle or catch a ride on a bike, and organizations like Wheels for Wellbeing or Cycling Without Age help cycling reach groups that are often disenfranchised by current transportation options. Moving people out of their cars and onto bikes can only help those who are dependent on vehicles for mobility.

At first, I assumed that even if we eliminated the need for private automobiles in city centers, we’d surely still need delivery trucks for goods. Surely we need to buy things, and all those things must be moved by a big truck! With the realization that many of the fatal vehicle/cyclist crashes in the last year have involved supposedly-professional drivers, I’m a lot less convinced. While some people think drones will be the delivery service of the future, I’m betting on the e-cargo bike. There’s still the potential for crashes, yes, but when the cargo bike is 10x lighter than a box truck and going at a lower speed, physics dictates you’ll have a lot fewer injuries and deaths from a cargo bike wreck. As anyone who bikes knows, UPS and FedEx are already used to being in the bike lane, so it will be a small adjustment for their drivers anyway. There’s also the possibility that there will be less consumption in a solarpunk future which would reduce the overall amount of deliveries necessary.

FedEx in the Bike Lane

FedEx truck parked in bike lane in Philadelphia by Phila. Bikes via a CC BY-SA 2.0

So, in the end, how do we get more people on bikes and reduce the number of single occupancy vehicle trips in our cities? One idea is to pay people to bike. This might seem weird at first, but when you take into account the public health benefits and cuts to both road maintenance and congestion created by pulling people out of cars it starts making sense. For something with precedent in the US, the government could offer tax credits for ebikes instead of electric cars. Ebikes have all the benefits of a regular bike, and for that $7,500 tax credit electric car buyers are getting, you could buy several entire ebikes. I suspect a lot of car owners would opt to use an ebike for the 48% of trips that are less than 3 miles when they see how much more fun it is to bike than drive. Long term, denser multiuse zoning and land use would do a great deal to make neighborhoods more walkable and bikeable.

Active transportation isn’t just better for your health and for reducing congestion in the city, it also helps improve the social fabric. It’s a lot easier to stop and talk to a friend or check out a new coffee shop when you’re on a bike or walking. I can recommend reading Just Ride for tips on the essentials of cycling for transport (hint – it’s not spandex). The more people riding, the safer the streets get for those of us using “alternate” transportation.

For more on bikes and urbanism, I’d suggest the War on Cars podcast and the book, Bikenomics. Bikenomics a really good book for interfacing with local business and government officials since economics is a more important driver of policy than human safety or happiness.

Do you cycle or walk for transportation? How does your area handle bicycle, pedestrian, and micromobility users?


Disclaimer: I may receive a small commission from affiliate links to books on this site.

Digital Minimalism – A Review

digital-minimalism-3d

I picked up Digital Minimalism by Cal Newport from my local library expecting to read more of the same information I’d seen before: social media companies use slot machine psychology to hook users; in-person communication is higher quality; spending so much time on our phones is hurting our relationships. This was all in there, but beyond the facts of the matter, Newport opened my mind to new ways of thinking about my relationship with technology and how it’s designed.

Minimalism at its core isn’t based on asceticism, where one denies earthly pleasures for the sake of austerity. I often find myself strongly trying to resist any emotional impulse to make purchases. I think this self-imposed austerity may have been causing undue stress by saying “you can’t have that,” instead of the healthier question of “is this something that could bring value to my life?”

In respect to technology, and apps in particular, Newport revisits calls by friends to join social media because it might be useful. He counters by saying that any tool should have a clear benefit to warrant your time. It’s not that any of these tools are bad per se, but since you only have so much time and attention, do you really want to spend it on something that might be useful, when there are so many other things that definitely would be?

three person holding smartphones

Photo by rawpixel.com on Pexels.com

I’ve mentioned before how I struggle to balance my thirst for new information and time to be creative and thoughtful. It’s something I feel I still haven’t worked out, but Digital Minimalism helped me find some new tools to use in this quest.

Digital Minimalism also deals with some of the more sweeping issues resulting from the unique types of distraction available in the 21st Century. There have always been more things to do than time in the day, so distraction is nothing new. We have reached a point, however, with the introduction of the smartphone, where corporations vying for your attention via the “attention economy” have unfettered access to your eyeballs. Even our work is becoming more fractured and distracting with the advent of the gig economy.

Even after the advent of the internet, people were relatively alone in their own heads when they were mobile. Sure, you could listen to a personal soundtrack on your Walkman. With a computer in your pocket, you’re only a quick tap away from whatever information you seek. The end of the bar bet was also the end of pondering.

The book doesn’t preach throwing away your smartphone, although it does suggest methods of using digital tools so they help you achieve your aims instead of those of the advertising companies. For some people, that might mean going back to a phone that only supports calling and texting. For many others, removing social media apps from your phone will suffice. The key is knowing yourself and what you want to accomplish with theses tools.

Digital Minimalism wasn’t what I expected. While it did have some of the same information I had read before regarding the distracting nature of digital technologies, it was neither alarmist nor placating. It presented a well-reasoned and tested set of tools for using digital technologies in a reasonable way that can help you feel a little less discombobulated in this distracting world.

Do you have any thoughts on practices to keep technology from distracting you from what’s important? Do you find it ironic I wrote this post predominantly on my phone? Sound off below!


Disclaimer:  This review is my honest opinion of the book, but I may get financial reimbursement through the affiliate link in this article.

Recycling Rant – Mixed Materials

I know that recycling shouldn’t be our first line of defense to handle our waste streams, but it is something that can help divert materials from the landfill once they already have been created. But you wanna know what really grinds my gears? Mixed material food packaging. Sure, China’s National Sword cut a great big hole through US recycling efforts, but we can still recycle #1 and #2 plastics in most municipalities, and #5 if there’s a Whole Foods somewhere in your area.

If we want to encourage recycling though, we need it to be easy. People are busy, making their waste stream pretty low on their priority list. So, why on Earth would you make a dairy container out of #5 plastic and put a #2 lid on it? You took the time to make sure the two plastics looked identical for cohesive branding, but the only visual difference to the consumer is if they look at the little recycle triangle on BOTH parts of the package. Is this easy? NO! Store bought icing is even worse with its #5 or #2 body and #4 lid. Where the heck am I supposed to recycle a #4 that isn’t a plastic film like a bread bag?

man wearing teal long sleeved shirt

Photo by Anas Jawed on Pexels.com

As engineers, I know we want to find the optimal solution for every component of a design, but for single-use containers, end-of-life needs to be high on that priority list. I’m not a food packaging engineer, but my hierarchy of design would go something like safety/preservation of food, taste impact, mechanical stability, and end-of-life. I’ll grant you that you can’t package in something that will impact taste or safety, but is that #2 lid really making enough of a difference in your product that it’s worth confusing people so you get #2 and #5 plastics mixed up in each other waste streams?

If you ARE a food packaging engineer, I’m begging you to please consider end of life when designing your products. We are on a finite planet, and because plastic is such a useful material, I would really love it if we could easily reclaim it for future use. Whether it’s particularly safe for contact with food or whether we really need so much of it is a whole ‘nother ball of wax. For today, please think through your material choices and try to find ways to make recycling easier.

Moving toward a zero waste, solarpunk, circular economy is high on my wish list for the world, and there’s plenty of research that shows that unless you make something easier than the alternative, people just don’t have the bandwidth. The onus is on the designer, not the consumer for this. We can do better – please do!

Is there anything you’ve run across that was packaged ridiculously? Let us know below!

A Better Way to Pay

dollar-currency-money-us-dollar-47344.jpeg

Photo by Pixabay on Pexels.com

As Adam Flynn said back in 2014, solarpunk takes infrastructure as a form of resistance. One of the biggest pieces of infrastructure that people interact with on a daily basis is payment systems. Payments aren’t as visible roads, or as tangible as housing, but decentralized, democratic payments are an important part of ensuring a brighter future.

We’re at a turning point for money. Since the middle ages, money has been controlled by the nation-state through fiat currency. The first experiments with digital-first money started in the 1980s, and we have seen an explosion in the availability of cryptocurrencies since the Bitcoin whitepaper was released in 2009. While Bitcoin hasn’t lived up to its original goal of being a replacement for fiat currency, it did revolt against the idea that only the state can create money.

Nation-states are now looking into developing crypto-fiat hybrids, and large corporate actors like Facebook are developing their own cryptocurrencies as well. The additional pressure of countries considering bans on cryptocurrencies that shield user identities makes me feel that governments see the danger that a truly decentralized monetary system would pose to their monopoly on power.

Brett Scott at Roar wrote about gentrification of payments from centralized issuers, “Put bluntly, digital payment facilitates a vast new frontier of financial surveillance and control, while also exposing users to new risks not present in the cash infrastructure.” He points out that the current trend for countries to emphasize digital (fiat) money over cash puts people’s finances increasingly into the hands of a small number of banks and state actors.

four assorted cryptocurrency coins

Photo by Worldspectrum on Pexels.com

I’ve previously touched on the subject of designing appropriate incentives into a monetary system, but for now I’m going to focus on how true digital cash could work. Bitcoin is the opposite of private since every transaction ever made with Bitcoin is recorded to its public ledger. Privacy coins allow for transactions to remain private by being recorded to the blockchain with the details obfuscated to all but those who performed the transaction. This has major benefits, particularly for the fungibility of a currency, which is a fancy way of saying that every unit of the money is created equal. For completely public blockchains like Bitcoin, certain Bitcoins may become “stained” due to their use in criminal activities in the past, meaning they may become harder to trade or spend than a “clean” Bitcoin. There is no such distinction between the status of a specific unit of Monero, for instance, since its past is unknown. The MimbleWimble protocol is a new blockchain which greatly simplifies the privacy aspects of a blockchain resulting in less power and data consumption.

The problem with most cryptocurrencies right now, however, is that they typically use what is called Proof of Work to verify transactions on the chain. Proof of Work burns large amounts of energy in an effort to “prove” the validity of the blockchain. Various other schemes have been developed to secure blockchain networks including Proof of Stake, Delegated Proof of Stake, and Proof of Cooperation. Proof of Cooperation was developed for FairCoin to enable a less energy-intensive verification method for blockchains. I think that a Proof of Cooperation-based MimbleWimble coin could provide the privacy and lower energy consumption that would be desirable for digital cash.

business bank chip credit card

Photo by Dom J on Pexels.com

This digital cash would restore the peer-to-peer nature of cash and avoid the data-mining perils of current digital payment companies like Visa or PayPal. It is still dependent on computing technology to work, which makes me feel like it would be less inclusive than actual cash. In an increasingly digital-first world, however, thoughtfully-designed cryptocurrencies will be more inclusive than the options designed by corporations or governments. For more on the subject of post-capitalist money, check out In each other we trust: coining alternatives to capitalism by Jerome Roos.

Money is often considered a taboo subject, but feel free to let us know your thoughts below. How do you think a separation of money and state could be liberating?

Tidalpunk, logistics, and degrowth

Grist recently ran an article about a Costa Rican project to build a carbon neutral shipping fleet using traditional wooden boat building techniques including sails as the primary means of propulsion. Maria Gallucci writes that the worldwide commercial shipping industry moves 10.7 billion tonnes of material every year, predominantly by diesel powered megaships.

This seems particularly problematic when we look at the 262 million tonnes of municipal waste generated in the US alone every year. The article about the Costa Rican fleet said sailing vessels wouldn’t be able to make up a large proportion of the shipping fleet, but the question I had was, “Do we really need to be shipping this much stuff?”

While capitalism is based on unending, cancerous growth, there is a growing community of people around the world investigating how dialing back the economy could be better for people and the planet. When coupled with a circular economy, the degrowth movement points toward a brighter, greener future like that envisioned in solarpunk. Decentralized, local production of goods using recycled technical and biological nutrients would lead to a more resilient and less energy-intensive supply chain.

Some front-line communities are already leading the charge against climate change by developing solutions that are much more relevant to their local environment than the one-size-fits-all techno-solutionism often argued for in the US and other western countries.

What do you think? Should we just find “sustainable” ways to keep consumption at it’s current levels, or should we reevaluate our relationships with material goods? Let us know below!

Rethinking batteries

close up photo of batteries

Photo by Hilary Halliwell on Pexels.com

As an engineer, I’m always thinking of how to make the objects around me work better. After rereading Cradle to Cradle this year, I’ve also been considering how to balance the needs of the present and the end of an object’s life.

When I was an undergrad, I did research in energy materials, so my interest was piqued when I saw the Volta Battery concept by Koraldo Kajanaku that won the Cradle to Cradle Product Design Challenge. Designed to be easily disassembled and made with materials that can easily be returned to technical or biological cycles, the battery is an excellent example of everyday objects that could be made better through thoughtful design.

The current ways in which we build batteries, solar panels, and wind turbines can’t get us all the way to a 100% renewable, solarpunk future. Elements such as the lithium used in cellphone batteries are rare and have some hurdles to true recyclability. Lead acid batteries, while more easily recycled, contain materials that are very hazardous to human health when not properly contained. Lithium batteries are an amazing technology, but we should be finding more readily recyclable alternatives for applications that don’t absolutely require the high energy density that a lithium chemistry affords. Aluminum, iron, nickel, and zinc could use a little more love when it comes to research and development. Nickel iron cells, for example, are likely the most robust chemistry available. They are quite heavy at the moment, but they might be one of the best options for grid backups since they don’t require the coddling that other technologies do. For the tidalpunks out there, you might want to check out ocean batteries.

More diversity of battery chemistries could lead to more energy democracy in energy storage. Communities could build the chemistry that uses the most local resources to back up their renewables. When paired with more sustainably designed windmills or solar thermal plants, we could do a lot more with a lot fewer rare earth minerals. Mechanical approaches to energy storage are also an attractive option. As is often the refrain with sustainable design, there is no silver bullet, we need many different solutions to fit the many different use-cases in existence. The 20th century was concerned with trying to shoehorn all our problems into a fossil fuel-shaped hole. The 21st will be defined by a diverse and beautiful ecosystem of solutions.

Is there an everyday object that you wish was designed more thoughtfully? Let us know below!

Why speculative fiction matters

woman reading a book

Photo by Pixabay on Pexels.com

When facing existential crises, it can be hard to see the point of things that aren’t directly related to the problem at hand. One thing that often comes under fire in times like these is fiction, both in books and other media. Even within fiction, scifi and fantasy have long been disparaged by “serious” academics since these realms of speculative fiction deal with fantastical elements that don’t exist. What these critics overlook, however, is the difference between truth and reality.

While elements of the political landscape are dedicated to obfuscating the truth, this isn’t what I’m talking about here. I’m referring to the ability of stories to separate all of our social and cultural baggage from important issues. Star Trek, for example, is known for holding up a mirror to the human condition and such important issues as racism, death, and war.

The other benefit of speculative fiction is stretching the imagination. As Einstein said, “No problem can be solved by the same kind of thinking that created it.” Fiction lets us see problems in a different light, whether they be social or technological in nature. Love it or hate it, the cellphone has its roots in science fiction, along with innumerable other technologies that now make up the fabric of daily life.

Most engineers and scientists I’ve met trace their interest in the sciences to scifi or fantasy. One of the main reasons I became an engineer was growing up with Star Trek: The Next Generation, Dinotopia, and other works of fiction. Asking ourselves “What if…” is the underlying principle of the scientific method, and it feeds our innate human curiosity about the world around us. Something doesn’t have to be “real” to help us explore what is true. So, even though the world is burning, take this as an invitation to think differently about the problem. The solutions to climate change just might be a fictional account away.

Is there a book or other story that influenced how you think about the world? Let us know below!

Riding the rails

Picture of an Amtrak train car; single deck; number 25051

One of the coach cars from the Cardinal

I recently went on a trip to Missouri, and since flying or riding the train would cost the same amount, I decided to do the solarpunk thing and try train. I’d only ever gone on short, touristy train rides before, so this was my first time evaluating rail as a long-distance travel option. While the exact values will vary based on model, train travel is typically regarded as less carbon intensive than flying or taking a single-occupant passenger car.

Any readers from Europe will likely be appalled at the poor state of rail travel in the US, but I think that for anyone with the time, rail travel is much nicer than taking a plane. Sure it takes a lot longer, but the seats are much bigger, the luggage restrictions are very generous, and you avoid federal employees invading your personal space.

An abandoned train - An engine from the New York Central line and two passenger cars

An abandoned train on a siding we passed

I rode two different lines, The Cardinal and The Southwest Chief. The Cardinal was a lot smaller train, but the overhead bins were larger than those on The Southwest Chief. This was likely because the Southwest Chief’s double-decker cars had a large baggage area on the lower level of the train. There is a smaller baggage area at the back of the coach cars on The Cardinal.

The interior of an Amtrak observation car. Sideways seats face large floor-to-ceiling windows

An Amtrak observation car featuring large windows

There was a cafe car on both trains, and the Southwest Chief also had observation and dining cars. Since I’m cheap, I brought my own snacks and water, but the food is there if you don’t bring your own. The ride is sometimes bumpy, but you don’t have to worry about your drink or food flying up unexpectedly like you might with a flight.

There are some downsides, of course. Number one is that you still have small, airplane-style bathrooms and you’ll almost certainly have to visit them if you’re going any appreciable distance. There’s also a relative dearth of destinations when compared to air travel. As most people fly to get from place to place these days, Amtrak can only support so many routes. If I were writing this article fifty years ago, then I would likely have a different story to tell.

A double-decker Amtrak Superliner car; windows dot the top deck of the car while the bottom features an entry hatch and ventillation grates

A double-decker Amtrak Superliner car

Another con is the occasional smoke breaks where people can get off the train and get their fix. The ventilation aboard the trains seems sufficient, but in the first few minutes following a smoke break I was wishing I could crack the window. Luckily, I wasn’t seated too closely to any smoking passengers, and the smell quickly dissipated.

Photo showing the large, open Grand Hall of Chicago's Union Station including two golden, greco-roman statues guarding the entrance to the train departure area

Chicago’s Union Station is fancy

I don’t know if traveling via rail rises to the level of luxurious (it might in the sleeping cars, which are available on both trains I took), but it is certainly more pleasurable than any of my previous travels by plane. For shorter trips (KC to Chicago for example) it can even be faster than driving since you avoid all that mucking about in city traffic. If you are planning a trip in the future, consider seeing if the train can get you there. It’s not an option we think of here in the States, but I’m glad I took a chance on it.

Have you traveled by rail in the US or abroad? What’s the train like in your area?

What is energy democracy?

At first glance, energy democracy is a funny term. Are we worried about a coalition of coal and natural gas blocking amendments to a bill from wind and solar? Is nuclear over in the corner putting forth reasonable proposals while everyone backs away slowly because of rumors regarding her volatile temper?

Solar Farm by Michael Mees via a CC BY 2.0

Solar Farm by Michael Mees via a CC BY 2.0

Energy democracy is actually about bringing self-determination of communities back to energy generation, storage, and distribution. Not that long ago, most of society ran on locally-sourced energy. The bulk of this was in the form of windmills, water wheels, and wood-burning fires. As fossil fuels took the stage during the industrial revolution, energy supply and demand became estranged. Economies of scale for fossil fuel-based energy generation led to the creation of large power plants that supply power over an interconnected grid.

The 21st Century has seen the return of distributed energy sources. While solar and wind get the headlines, small modular reactors (SMRs), in-stream hydro, tidal, geothermal, and other distributed energy sources are showing promise as well. While the growth of these distributed generation technologies is good for decentralized solarpunk communities, it creates a point of friction with the existing centralized power grid. This is why when incumbent utilities do support renewables, they still want to build large, utility-scale projects. Nevada has had the most public battle over net metering in recent years, but many utilities have tried to suppress energy decentralization by pressuring legislators. In states like Virginia, where two companies have a monopoly on 80% of the energy market, it’s easy to see where problems might arise.

panoramic shot of sky

Photo by Pixabay on Pexels.com

There are some technical problems with energy decentralization which stem from the centralized past of the grid. As David Roberts explains at Vox, the grid was designed for one-way power flows from generation to distribution to end user. Solar, wind, and other distributed energy sources upend this model, sending power from the end-of-the-line back into the grid. There are several possible ways to overcome these difficulties ranging from going off-grid completely to piping every single generation source back into one giant grid managed by a central authority. For a solarpunk future, one possible option is the “decentralized, layered-decomposition optimization structure.” In this arrangement, the responsibilities of generation sources are held locally, but communities can still exchange power on an overarching, interconnected grid.

In some communities, such as Boulder, CO, the people have decided to municipalize their energy grid. Putting the grid into public hands makes it easier to align incentives between homeowners with rooftop solar, community-based generation projects, and the needs of all the users on the grid. Utility monopolies have to maximize profit and maintain the status quo. Energy democracy brings the power to the people, who can build a grid that uses distributed generation for a more robust, environmentally friendly, and healthy grid. The most extreme example of calls for energy democracy at the moment is the suggestion of a public takeover of PG&E. For more on areas that are flexing their energy democracy muscles, check out the Institute for Local Self-Reliance’s Community Power Map.

Do you have any energy democracy projects in your area? Let us know how your communities are fighting monopoly power and bringing clean, distributed power to the people.

Tidalpunk: Come Home to the Sea

Many think life on Earth started in the oceans, and while there is scientific debate on that front, there’s no denying that humans have been drawn to the water since before we built the first city on the banks of the Euphrates. With an estimated 80% of the world’s population living within 100 km (~60 mi) of a coastline, it’s no surprise that solarpunk has a sibling that brings this love of the water front and center – tidalpunk.

Tidalpunk takes the environmental consciousness and appropriate technology of solarpunk to the high seas. Sailing ships, autonomous seasteads, and cities flooded by the rising waters of climate change populate visions of a tidalpunk future. I suspect that due to the Moon’s influence on the tides, tidalpunk and lunarpunk will find some interesting synergies.

Return of the Sail

boat classic clouds cruise
Photo by Inge Wallumrød on Pexels.com

The shipping industry currently accounts for 2.3% of carbon emissions, and the industry is targeting a 50% reduction in emissions by 2050. Most cargo ships run on diesel now, but we once sailed the seas using the renewable power of the wind. While having a backup propulsion method available would be prudent, when the wind is blowing, cargo could move without the use of fossil fuels. Low Tech Magazine has written several articles about the potential of bringing back sailing ships as cargo vessels. Our current cargo fleet could even be retrofitted with tethered, kite-like sails.

Seasteading

An artificial island in a rough c-shape. It is covered in grass and has several berths for boats.
Proposed artificial Island in French Polynesia by Blue Frontiers

Seasteading covers a variety of concepts for humans to make their home in the sea. Proponents of seasteading point to overcrowding and a lack of social innovation on land as reasons to move seaward. Some projects that could be considered under this umbrella are Sealand, various underwater habitats, and aircraft carriers.

delta_printer_1-8419da34982ad3af20046088872ca1c7cedbd1d9abd347586fdab267be6a52a1
A member of Project Entropy demonstrating a delta-style 3D printer

Project Entropy is a solarpunk makerspace flotilla with the aim to address plastic waste in the ocean and convert it into useful objects. The self-described micronation is also experimenting with distributed governance while it expands the frontiers of distributed manufacturing. While the Seasteading Institute and Blue Frontiers have interesting visions of the future, Project Entropy is making it real right now. Another project already on the water is the Flipiflopi, a boat built entirely from plastic recovered from the ocean and roadsides in Kenya.

A muli-colored sailboat sits in shallow water just off a white, sandy beach. Many people are on the boat and the shore. A Kenyan flag flies high above the solar panel on the boat.
The Flipiflopi recycled boat

The SeaOrbiter science vessel is one of the most exciting projects happening in the space. Planned as a full-time, ocean-going science vessel, the SeaOrbiter will have on-board laboratories and allow extended observation of the ocean. Parts of the ship will be kept at higher pressure to allow scientists to dive more often than would be possible from a surface vessel due to decompression issues like the bends.

A profile view of the SeaOrbiter science vessel. It has a large mast which pokes 27 m above the waterline. Another 31 m of the vessel are below the waterline. The vessel has various living quarters, laboratories, and is powered by wind and solar.
A profile view of the SeaOrbiter

Flooded Cities

boat near to dock
Photo by Daniel Frank on Pexels.com

Venice is the most well known flooded city in the world, but rising seas will soon give the world a number of similar locales. Even Venice is preparing for rising floodwaters with the MOSE Project, a giant flood gate designed to mitigate the worst tides from the Adriatic. NOAA has built an Interactive Sea Level Rise Map to show what areas will be most impacted by different sea level rise scenarios. In the US, Miami is particularly vulnerable since it’s geology precludes a flood gate or wall system like MOSE.

Where to Start

If tidalpunk sounds like something you’d like to investigate further, here are some resources to check out:

Do you have any experiences with tidalpunk? Let us know below or send us a comment on Sunbeam City. Thanks for coming aboard!

The Upcycle — A Review

UpcycleCoverSpiral1-2

The Upcycle by William McDonough and Michael Braungart is the followup to Cradle to Cradle. Written in 2013, it brings a decade’s worth of new information and experience to the concept of Cradle to Cradle design thinking.

If you’re interested in the circular economy and can only read one book – this is it. There is a short section at the front that recaps the underlying principles of Cradle to Cradle systems in case you haven’t read the first book. While Cradle to Cradle was groundbreaking for the concept that we should design human industry to be a positive good for the environment, The Upcycle contains many more specific examples of projects where the authors were able to achieve these ends.

For example, in the book there is a story of Dan Juhl who pairs farmers with investors for building renewables on their land. The investors get a guaranteed return on their investment for ten years, and the energy generation equipment reverts to the farmers after this period. More renewables end up on the grid, and families get an additional source of income by owning the means of energy production.

The physical book itself is a nice counterpoint to the design of Cradle to Cradle. While Cradle to Cradle was designed to be reusable in technical nutrient cycles, The Upcycle is designed with biodegradable inks and paper so that it can become a biological nutrient again. One of the main ideas of Cradle to Cradle design is that things should be delineated into two separate nutrient streams: biological and technical. Wood, paper, and things of this nature can be reused as they would be in nature by returning to the land while technical materials like plastics and metals should be reclaimed for infinite technical cycles. Preventing the creation of “monstrous hybrids” is an important goal of the Cradle to Cradle design process. These materials are amalgamations of material that are difficult, if not impossible to separate and reuse. This is particularly harmful if the materials in these hybrids are toxic in nature. The book quotes McDonough, “Let’s put the filters in our heads and not at the end of pipes.”

The Upcycle is a breath of fresh air. McDonough and Braungart show how we can rethink the way we design everyday objects to fit into the constant cycles of Mother Nature and end the insanity of cradle-to-grave mentality. Cradle-to-Cradle design is definitely the way we should be thinking  when we design technologies and objects for our solarpunk future.

Do you use any Cradle to Cradle products in your life? What has your experience been? Let us know below!

Making it real…

As you may recall, I want to find ways to bring more practical solarpunk into my life and into the world. To that end, I purchased a Raspberry Pi 3 B+ kit made by Canakit. I’m hoping to explore some of the ideas I discussed regarding solarpunk phones and communications during the last few weeks. I’m not an electronics savant by any means, so we’ll see if my hobbyist level skills can cobble anything interesting together out of the kit.

Box containing a Raspberry Pi 3 B+ and breadboard for electronics experiments

On a related note, I also just ordered a new wifi-enabled wall switch to control the lights in our main living area. While that isn’t particularly solarpunk, I think reflashing the electronics to not be dependent on a third party service is. As sold, the switch requires downloading and using an app that sends data out to the web through servers owned by Samsung and then back to my apartment to control my lights. This is both creepy and seems silly since the lights are right above the voice assistant I’m using to control them. Why do I need servers hundreds of miles away involved in this conversation?

I’ve had good luck with the Sonoff-Tasmota firmware from GitHub for other smart home devices, and will be using the information from their wiki to attempt to reflash this new switch. Since it’s a totally different piece of equipment, I’m a little nervously optimistic about the results. If all goes well, the switch will only talk to my local network and the only connection to the outside world will be through Alexa.

Wifi-enabled smart switch with front cover removed. Green circuit board is exposed showing a TYWE3S wifi chip. Other components are hidden from view as they're on the back side of the board.

At some point, I’m hoping to switch to a more privacy-centric voice assistant like Mycroft or Snips, but getting all of my smart home devices other than my voice assistant to be local only should make the transition simpler once I do get that setup. The Raspberry Pi will be an important part of this transition as I’m hoping to begin testing Mycroft and/or Snips once I’ve gotten some of the basic input/output bits of the Pi figured out.

Raspberry Pi 3 B+ in transluscent plastic case

If all goes well, then I’ll try building a mobile voice assistant that can kick result data to a simple linked smartwatch like a Pebble. I sketched out a highly detailed schematic for your pleasure below.

Screen Shot 2019-02-21 at 3.19.46 PM

I’m not sure how hard the communication with a watch will be, but the first step will be getting the voice assistant going on the Raspberry Pi. After deciding which AI is better to work with then I’ll try adding battery power and watch communications.

What are some of the ways you are making solarpunk real? Let us know below!

Solarpunk Phones Part 4: Magic

woman reading a book

Photo by Pixabay on Pexels.com

[This is Part 4 of a series of posts. Here are links to Part 1: Repair, Part 2: Decentralize, and Part 3: Design.]

Despite marketing jargon, I don’t think that we’ve yet reached the point where our technology is “magical.” A cave person might feel differently, but smartphones, computers, and televisions are clearly tools in my eye. There are a few exceptions, but I want devices that more elegantly flow with our lives instead of us molding our behavior around the device.

In stories, magic feels more like an extension of the being wielding the power. Even when the power source isn’t from within the individual, magic is still channeled through the magic user, so they must be in tune with it, but not consumed by it.

Technology that “just works” is a step in the right direction, since few things are as un-magical as having to reinstall drivers. I think we can go farther though. For me, at least, it’s easy to get lost in the technology itself and lose sight of the end goal of the tech. To be truly magical, I think the device and interface need to melt away so we can focus on the real reason we’re using it. At their core, smartphones are devices for communication. How do we make meaningful communication with those we care about easier?

color conceptual creativity education

Photo by Pixabay on Pexels.com

Take the pencil. As long as it’s sharp, most people don’t spend a lot of time worrying about how much it weighs or how thin it is. It gets the job done and you don’t have to think much about the object itself. There are certainly applications like art where the hardness of the graphite is an important consideration, but for the majority of situations, the pencil is incidental to the outcome of wanting words or doodles on the page. The pencil is an extraordinary piece of technology because it works so well that we pay it barely any heed.

A few devices approach this simplicity: e-readers, Pebble smartwatches, smartpens, the Beeline bike navigator, the Typified weather poster, voice assistants, and most calculators. Maybe I just don’t have the headspace for multi-function gadgets, but for me, the more functionality you cram into a device, the more unwieldy it becomes. Perhaps some brilliant UI/UX designer will come up with a way to make the multi-function nature of the smartphone more seamless, but as of now, I find smartphones to be amazing but kludgy.

The people working on the Skychaser solarpunk comic are doing a great job of thinking of magical technologies. You should definitely check them out if this is something that appeals to you.

I don’t have the answers for finding the right balance of functionality and magic but wanted to explore some of the questions with you. Maybe you have some ideas of how to make technology a little more magical. If you do and want to share, please post something below!

Solarpunk Phones Part 3: Rethinking Design

[This is Part 3 of a series about solarpunk phones. Here are links to Part 1: Repair and Part 2: Decentralize.]

There are essentially two extremes to technological design: the all-in-one device or the single-tasker. Take, for example, the knife. There are lots of single purpose knives – paring, cleaver, steak, etc. There are also several different types of multi-function knives, the best known being the Swiss Army knife. Depending on what task you have at hand, you would select the best knife for the job. Out and about, sometimes the best way to go is to carry the Swiss Army knife, but since it’s a multi-function device, it isn’t usually the best tool for the job, even though a lot of the time it is pretty decent at several different things. Unfortunately, the more functions you cram into a Swiss Army knife, the less useful it becomes at any single task. There’s a certain break-even point where it just gets ridiculous.

Image shows 8 Swiss Army knives from left to right with an increasinly large number of functions.

Victorinox pocket knives by quattroman76 under a CC BY-ND 2.0

While smartphones can do a great many things, since they aren’t really designed to do one specific task, they end up sacrificing the ability to do any one thing really well. I wonder if we’ve lost something by trying to unify all of our devices. Our mobile technology has become a monoculture compared to the wide variety of form factors of phones before a single slate of glass became the norm.

Before the consolidation of iPhone-esque design hit the scene, some people thought the future would be a cloud of wearable devices, the Personal Area Network (PAN). While carrying a number of single-focus gadgets on a common network may not be the best solution for everyone, it could be game changing for some. Also, broader acceptance of PANs might lead to more innovation in the smartphone space with regards to form factor. While there are rumblings of foldable phones, I can’t help but think those are merely an evolution of the current iPhone-centric design school.

This slideshow requires JavaScript.

Random sketches I made of different hubs/accessories for a PAN-based device

Modular, open source electronics architectures would be a step in the right direction, allowing designers to select off-the-shelf components for inclusion in many different types of devices. The closest things I’ve seen on the market would be the Fairphone, which we’ve mentioned before, and the RePhone Kit, which is an Arduino-compatible phone kit from Seeed Studio. It’s a neat little phone hacking platform that lets people build their own phones. Unfortunately, Rephone is only 2G data capable, meaning no data connection in the US. Motorola gets an honorable mention for the Moto-mods system that lets you add different features to your phone through a special port on the back of their Z-series phones.

Of course it isn’t solarpunk if we aren’t designing with the impact of the device in mind from the beginning. Dominic Muren’s  Skin, Skeleton, and Guts model for product design is one approach to this design problem. When coupled with the Cradle to Cradle idea of separate biological and technical nutrient cycles, I can imagine future devices where the skin of the device is a compostable fabric that can be changed to suit the style of the user, while the metal skeleton and modular, electronic “guts” could be reused in further technical cycles.

TL;DR

In short, when approaching the design of a solarpunk phone, I would want modular components to be at the core to allow for more diversity of form factors like there once was in the mobile space. Also, devices should be designed for the circular economy using safe and reusable/recyclable materials.

Do you have any ideas for what should go into a solarpunk smarphone? Would a PAN be too cumbersome, or do you find that the “Jack of all trades, master of none” nature of the smartphone isn’t worth the trade-offs? Let us know below!

Solarpunk Phones Part 2: Decentralize

antique broken cell phone communication

Photo by Pixabay on Pexels.com

[This is Part 2 of a series about solarpunk phones. Here’s a link to Part 1: Repair and Part 3: Design.]

Humans have an amazing capacity for cognitive dissonance. Even though we may know something is bad for us or has significant negative consequences, we’ll still trudge ahead, even if the benefit to an action is small. As Steven Szpajda from This Week in Law is fond of saying, people will give up large amounts of privacy and security for a very small perceived benefit.

Solarpunk Druid had a recent post to this effect, “It’s the events stupid: Why FB is the hardest media to quit” discussing the titular quandary. As we have with fossil fuels, we’ve become reliant on systems whose existence is at cross-purposes with our own.

For this second part of my exploration of what a solarpunk communication device might look like, I want you to consider your relationship with your carrier and web service providers — Verizon, Facebook, etc.

antenna clouds equipment frequency

Photo by Pixabay on Pexels.com

Most of us have become comfortable, complacent even, with the idea that the companies that control our communications know everything about our habits. What might be surprising though, is that the information they collect isn’t just available to other multi-national megacorporations, but that private citizens can easily get access to the location of customers of at least AT&T, Sprint, and T-Mobile in the US.

Solarpunk, as a subgenre of speculative fiction is all about “what-if,” so what if we weren’t beholding to megacorps for our communications? What if we decentralized our cellphone and internet access? With the increasing presence of AI subservient to known bad actors, it’s time we start examining how to wean ourselves off of the corporations that feed our information addictions. While taking a break from technology can be beneficial for our mental well-being, I don’t think it’s practical to completely give it up either.

Solarpunk is also about making the “what-if” into a concrete reality, so what technologies exist to help us break free and decentralize our digital lives?

Mesh Networks

Mesh networking, which we’ve mentioned before, allows various parts of a network to communicate without a single central node, like a cellphone tower, controlling all of the traffic. If everyone in a given geographic area had a smartphone that worked on a mesh network, they wouldn’t need a carrier to contact their friends in that area. This has been touted as a potentially life-saving measure for natural disasters, and is also a powerful tool for people protesting authoritarian regimes. Mesh networks are still in the early stages of development, but they point toward a possibile future of decentralized communication where the users themselves are the network, not some centralized authority that could leave users in the dark either intentionally or because of a cyber attack. Some current implementations include the mesh network going up in Detroit, the Serval Project, GoTenna, and the Althea Mesh.

three person holding smartphones

Photo by rawpixel.com on Pexels.com

Leaving for greener social pastures

Between the shuttering of GeoCities a decade ago and recent major changes to Tumblr and Flikr, denizens of the internet have witnessed great swaths of the web be deleted at the whim of a single entity. At the same time, data breaches like Equifax and direct manipulation of users by Facebook and their partners has made it more clear than ever that you’re the product for these companies.

The Open Source Community has been experimenting with alternative social networks for some time, and with the W3C ActivityPub standard, we’re seeing the emergence of an interconnected, social media Fediverse. What’s really cool about the Fediverse is that people on different platforms can follow each other without having to sign up for a different network. If the current behemoths had started this way, then you could follow your friend on Twitter from your Facebook account without having a Twitter account yourself. Since these platforms are Open Source, anyone can start their own instance, so there are communities built up around common interests (like solarpunk) but you can still hang out online with your friends from a different instance. There are a number of different platforms modeled off existing networks like FB and Twitter, but I’m sure we’ll see new concepts emerge as well. There are even some beta plugins to allow WordPress websites to be federated with ActivityPub, so maybe you’ll see Solarpunk Station in the Fediverse soon!

The Fediverse isn’t the only decentralized social networking solution out there either. Other clients like Scuttlebutt and Steemit have also cropped up in recent years. Scuttlebutt has a large solarpunk contingent already as seen in the partial graph of the network below, while Steemit skews heavily toward the cryptocurrency crowd as it is itself based on the blockchain. Scuttlebutt has some really cool features like being designed around intermittent connections. There’s a lot more information and a fun intro video on their website.

Have you tried any of these new social media sites or built a mesh network? Let us know how it went below!

 

Solarpunk Phones Part 1 : Repair

A cardboard box with a stylized art deco hand holding a wrench. Inside the box is a replacement screen kit for an iPhone 5.

My repair kit from iFixit

[This is Part 1 of a series about solarpunk phones. Here’s a link to Part 2: Decentralize, Part 3: Design, and Part 4: Magic.]

Smartphones are a major source of e-waste when disposed, and they have been one of the worst offenders when it comes to planned obsolescence, particularly after the introduction of the iPhone in 2007 propelled the smartphone to widespread popularity. It seems that we may be entering a new phase of ennui in regards to new phone features, however, with 11 million iPhone users opting for battery replacements instead of new phones in 2018. Is it finally time for the Fixer Movement to takeover cellphones?

Why repair?

combination wrench screw bolt and pointed top hammer

Photo by Felix Mittermeier on Pexels.com

I grew up in a fixer household. My dad is a biomed tech who fixes the medical equipment at a hospital, and my mom has furniture repair and sewing skills. Up until recently, all of our cars were bought as salvage and a lot of the furniture and home electronics came to us in various states of disrepair. This was just how we did things because we could fix things and didn’t see the point in paying full price if we could get it a lot cheaper because of a minor problem.

When you start looking at the exploitation taking place both in the raw materials needed for smartphones as well as in their disposal, it quickly becomes clear that the true cost of electronics is not being taken into account when you can buy a cell phone for $25. The hidden costs of goods, or externalities as economists would say, are one of the main arguments for a carbon tax, as well as many other measures industry would call “over-regulation.”

Between the environmental, moral, and economic downsides of not repairing a mobile device, keeping the phone you have for as long as possible starts to look a lot more palatable. This is especially true as the most important functions of the smartphone have reached a point of technological maturity.

This week I’m embarking on my fourth smartphone repair. All of these have been screen replacements, as it is easily the most fragile part of the phone. Of the three phones I’ve repaired, I only had one where I successfully replaced just the glass and was able to reuse the screen underneath. Some of that might be my relative inexperience, and some of that is because the phones aren’t designed to be repaired. If you are planning on repair a phone, I would suggest checking out iFixit as they have a lot of different parts available as well as the most extensive repair database around. Youtube also has a lot of repair videos for things that aren’t in iFixit yet.

If you aren’t comfortable doing a repair yourself, there are a lot of smartphone repair places that have popped up around the country in response to the commonality of shattered screens. In some locales, there may still be repair shops for other goods as well, particularly sewing machines, vacuums, and shoes.

Many towns have Repair Cafes or Fix It Clinics that are run by volunteers on a varying basis. Boulder, CO has a very active repair community, and there is a periodic Repair Cafe run by the Time Bank here in Charlottesville, VA.

The future

While many current smartphones require a lot of time and “the knack” to repair, there is some hope that this won’t always be the case. The easiest way to make sure that smartphones are easy to repair is to design them that way to begin with.

One area where there has been a lot of interest, but not a lot of development is in the modular smartphone space. Google’s Project Ara, the Phonebloks project, and many others have shown concepts of LEGO-like modular phones with parts that the end user can swap out to customize or repair their phone. The only true contender in this space is the Fairphone. Designed with repairability and transparency in mind, the Fairphone was designed to do for electronics what Fair Trade has done for food and clothing. By evaluating every part of their supply chain and making the phone easily repairable by the end user with modular components, the Fairphone is the most ethically-sourced and repairable mobile device on the planet.

While the Fairphone is an impressive achievement, the fact that it is the only phone built to what should be basic-human-decency standards is telling of the state of the mobile device industry. As smartphones peak and differentiation wanes between vendors, hopefully we’ll see an emergence of a modular standard with many vendors making parts that are interoperable on a similar mobile platform. This was the original vision of Project Ara before its cancellation in 2016. The only ecosystems that approach this ideal in my mind are the desktop PC market and Raspberry Pi.

The Runcible, a round smartphone concept is shown with its circular wooden back removed exposing the circular circuit board and camera module.

The Runcible with its wooden back removed (from their Indiegogo campaign page)

One other interesting, but also unreleased, concept of a repairable phone was Runcible. Envisioned as an anti-smartphone, Runcible was designed to be a repairable, digital heirloom that would be a piece of tech you would want to grow old with. While its Indiegogo campaign was successful, as with many crowdfunded projects, the creators have gone dark without any backers getting their hardware. Some people might cry foul, but I think the problem with crowdfunded hardware is that making hardware devices is a lot harder than it looks.

In any case, I think that electronic devices built for a solarpunk future will need to be modular, repairable, and ethically-sourced as a first step. This is the first post in a series prompted by Solarpunk Druid’s “The Solarpunk Phone,” so I will be linking subsequent parts as they’re added.

Do you have any thoughts on what’s important for solarpunk electronics? Are there any features that current phones don’t have that would make your life easier? Let us know below!